Oxygen Meter | MO-200

Measure gaseous O_2 in the laboratory and porous media

Heated Detector
The protective membrane in front of the oxygen sensor can be heated to prevent water from condensing on the membrane and blocking the diffusion path. The heater is typically used when sensors are deployed in soil or compost where relative humidity is close to 100%.

Rugged Housing
Housed in a polypropylene body and electronics are fully potted, ideal for long-term deployment in porous media, including acidic environments (mine tailings). Two head options are available: a diffusion head that creates a small air pocket for measurement in porous media and a flow-through head with two adapters for tubing that allows measurement of gas flowing in lines.

Internal Temperature Sensor
All oxygen sensors have an internal thermistor (type-K thermocouple is available upon request) that allows for temperature monitoring and correction of signal for temperature effects.

Simple Calibration
Voltage output is linearly proportional to absolute amount of oxygen. Calibration is accomplished by measuring the voltage under ambient conditions (atmosphere is 20.95 % O_2) and deriving a linear calibration factor (slope). A zero offset can be measured with N_2 gas (recommended for measurements below 10 % O_2).

Output Options
Analog and digital output options are available. Analog version is an un-amplified voltage output. Digital version is SDI-12 communication protocol. Sensor is available attached to a hand-held meter.

Typical Applications
Applications include: measurement of O_2 in laboratory experiments, monitoring gaseous O_2 in indoor environments for climate control, monitoring of O_2 levels in compost piles and mine tailings, monitoring redox potential in soils, and determination of respiration rates through measurement of O_2 consumption in sealed chambers or measurement of O_2 gradients in soil/porous media.
Dimensions

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MO-200</td>
<td>0 to 100 % O₂</td>
<td>±0.1 % at 20.9 % O₂</td>
<td>Less than 1 %</td>
<td>2.2 µmol O₂ per day at 20.9 % O₂ and 23 °C (galvanic cell sensors consume O₂ in a chemical reaction with the electrolyte, which produces an electrical current)</td>
<td>14 s (time required to read 90% of saturated response)</td>
<td>0 to 50 °C; less than 90 % non-condensing relative humidity up to 30 °C; less than 70 % non-condensing relative humidity from 30 to 50 °C; 60 to 140 kPa</td>
<td>126 mm length, 70 mm width, 24 mm height</td>
<td>32 mm diameter, 68 mm length</td>
<td>35 mm diameter, 35 mm length, 125 mesh screen</td>
<td>32 mm diameter, 91 mm length, 0.25 in barbed nylon connectors</td>
<td>210 g</td>
<td>2 m of two conductor, shielded, twisted-pair wire; additional cable available; santoprene rubber jacket (high water resistance, high UV stability, flexibility in cold conditions)</td>
<td>Sensors are unaffected by CO, CO₂, NO, NO₂, H₂S, H₂, and CH₄. There is a small effect (approximately 1 %) from NH₃, HCl, and C₆H₆ (benzene). Sensors are sensitive to SO₂ (signal responds to SO₂ in a similar fashion to O₂). Sensors can be damaged by O₃.</td>
<td>4 years against defects in materials and workmanship</td>
</tr>
</tbody>
</table>

Note: The diagram shows the dimensions of the meter, oxygen sensor, flow through head, and diffusion head. The measurements are in millimeters (mm) and inches (in) where applicable.